MATH 150 – CALCULUS AND ANALYTIC GEOMETRY I

1. <u>Course Description:</u>

 This course is the first in a three-semester calculus sequence designed for mathematics, science, and engineering majors. Topics include limits and- continuity; differentiation of algebraic, trigonometric, and exponential functions and their inverses; integration and the fundamental theorem of calculus; and applications of differentiation and integration. Concepts are covered with the expectation that students are preparing to take Calculus II and beyond.

2. Topics Covered

- Limits and continuity
 - Definition of a limit and computation of limits using numerical, graphical and algebraic approaches
 - Theorems about limits
 - Continuity of a function at a point and on an interval
 - Intermediate Value Theorem.
- Derivatives
 - Derivative as a limit and differentiability of a function
 - Interpretation of derivative as a slope of a tangent line and as a rate of change
 - Differentiation formulas: power rule, product rule, quotient rule
 - Chain rule
 - Derivatives of trigonometric functions
 - Higher order derivatives
 - Implicit differentiation
 - Related rates
 - Tangent line approximation and differential.
- Applications of derivatives
 - Maximum and minimum; optimization
 - Mean Value Theorem
 - Concavity and inflection points
 - Graphing functions using first and second derivatives, concavity, and asymptotes.
 - Indeterminate forms and L'Hôpital's Rule.
- o Integrals
 - Indefinite integrals and their properties
 - Definite integrals as Riemann sums
 - Special properties of definite integrals
 - Fundamental Theorem of Calculus
 - Integration by substitution
- o Inverse functions
 - Differentiation of inverse functions
 - Exponential and logarithmic functions
 - Inverse trigonometric functions.
- Using graphing technology to analyze topics
 - Graphical manner
 - Numerical manner
 - Tabular manner.

3. <u>What to expect?</u>

• <u>Time: The most common term lengths are listed below; others would be</u> proportionate. Outside of class time is studying, completing homework, reviewing, <u>etc.</u>

<u>Length of</u> <u>term</u>	<u>In-class time</u>	<u>Out-of-class</u> <u>time (</u> typical)	<u>Total hours/wk</u> (typical)	<u>Total Term hours</u> (typical)
<u>17 weeks</u>	<u>5 hrs/wk</u>	<u>10 hrs/wk</u>	<u>15</u>	<u>255</u>
<u>8 weeks</u>	<u>10.7 hrs/wk</u>	<u>21.4 hrs/wk</u>	<u>32.1</u>	<u>255</u>

- <u>Technology:</u> A graphing calculator is required, and a Ti-84CE is recommended. Graphing technology is used regularly.
- <u>Grading:</u> Students who earn a grade of C or higher in Math 150 will pass this course and can take the next Math class that they need for their major.

4. Who should enroll?

• This Calculus course is recommended for any student who majors in STEM. Students who are eligible to enroll in MATH 150, Calculus and Analytic Geometry I can enroll in this class.

5. What prior knowledge students need to know to be successful?

- Solving Equations quadratic, rational, radical, exponential, logarithmic, polynomial, trigonometric
- Inequalities and Interval Notation
- Rational Expressions factoring, simplifying, long division, completing the square, rationalizing numerators
- o Relations and Functions- definitions, evaluating, domain and range
- Trigonometric Identities the ability to rewrite and algebraically manipulate trigonometric expressions