MATH 260 - CALCULUS AND ANALYTIC GEOMETRY III

1. Course Description:

- This third course in a three-semester calculus sequence covers vectors in two- and three-dimensional space, quadratic surfaces, vector-valued functions of several variables, partial differentiation and multiple integration, vector fields, line integrals, and conservative fields. The course is designed for mathematics, science, and engineering majors.

2. Topics Covered

- Vectors in the plane and three-dimensional space
- Basic properties of vectors
- Dot, cross, and triple products of vectors
- Equations of lines and planes in three-dimensional space.
- Vector-valued functions
- Limits, continuity
- Differentiation and integration with applications to velocity and acceleration
- Tangent, normal, binormal local coordinate system
- Arc length and curvature.
- Functions of several variables
- Real-valued functions of several variables, contour lines, and level surfaces
- Quadratic surfaces
- Limits and continuity
- Partial differentiation and differentials; chain rule
- Directional derivatives and gradient
- Local and global extrema; Lagrange multipliers
- Optimization problems.
- Multiple integration
- Evaluation of double and triple integrals; Fubini's Theorem
- Applications of double and triple integrals, such as calculations of volume, area, center of mass
- Triple integrals in cylindrical and spherical coordinates
- Change of Variables Theorem in multiple integrals; Jacobian.
- Vector fields
- Direction fields; curl and divergence
- Conservative fields and potential function
- Line integrals and Green's Theorem
- Surface integrals, including integrals involving parametrically defined surfaces
- Stokes's and divergence theorems.
- Using graphing technology to analyze topics
- Graphical manner
- Numerical manner
- Tabular manner.

3. What to expect?

- Time: The most common term lengths are listed below; others would be proportionate. Outside of class time is studying, completing homework, reviewing, etc.

$\begin{aligned} & \text { Length of } \\ & \underline{\text { term }} \end{aligned}$	$\begin{aligned} & \underline{\text { In-class }} \\ & \hline \underline{\text { time }} \end{aligned}$	$\begin{aligned} & \text { Out-of-class } \\ & \hline \text { time (typical) } \end{aligned}$	$\frac{\text { Total hours/wk }}{\text { (typical) }}$	$\frac{\text { Total Term hours }}{\text { (typical) }}$
17 weeks	$5 \mathrm{hrs} / \mathrm{wk}$	$7 \mathrm{hrs} / \mathrm{wk}$	12	204
8 weeks	$11 \mathrm{hrs} / \mathrm{wk}$	$14.5 \mathrm{hrs} / \mathrm{wk}$	25.5	204
6 weeks	$\underline{14}$	$\underline{20}$	$\underline{34}$	$\underline{204}$

- Technology: Graphing technology is used.
- Grading: Students who earn a grade of C or higher in Math 260 will pass the course.

4. Who should enroll?

- This Calculus course is recommended for any student who majors in STEM and has completed Math 155 (Calculus II) with a grade of C or better.

5. What prior knowledge students need to know to be successful?

- Limits
- Differentiation
- Optimization
- Integration and Fundamental Theorem of Calculus
- Parametric Equations and Polar Equations

