MATH 260 – CALCULUS AND ANALYTIC GEOMETRY III

1. Course Description:

• This third course in a three-semester calculus sequence covers vectors in two- and three-dimensional space, quadratic surfaces, vector-valued functions of several variables, partial differentiation and multiple integration, vector fields, line integrals, and conservative fields. The course is designed for mathematics, science, and engineering majors.

2. Topics Covered

- Vectors in the plane and three-dimensional space
 - Basic properties of vectors
 - Dot, cross, and triple products of vectors
 - Equations of lines and planes in three-dimensional space.
- Vector-valued functions
 - Limits, continuity
 - Differentiation and integration with applications to velocity and acceleration
 - Tangent, normal, binormal local coordinate system
 - Arc length and curvature.
- Functions of several variables
 - Real-valued functions of several variables, contour lines, and level surfaces
 - Quadratic surfaces
 - Limits and continuity
 - Partial differentiation and differentials; chain rule
 - Directional derivatives and gradient
 - Local and global extrema; Lagrange multipliers
 - Optimization problems.
- Multiple integration
 - Evaluation of double and triple integrals; Fubini's Theorem
 - Applications of double and triple integrals, such as calculations of volume, area, center of mass
 - Triple integrals in cylindrical and spherical coordinates
 - Change of Variables Theorem in multiple integrals; Jacobian.
- Vector fields
 - Direction fields; curl and divergence
 - Conservative fields and potential function
 - Line integrals and Green's Theorem
 - Surface integrals, including integrals involving parametrically defined surfaces
 - Stokes's and divergence theorems.
- Using graphing technology to analyze topics
 - Graphical manner
 - Numerical manner
 - Tabular manner.

3. <u>What to expect?</u>

• <u>Time: The most common term lengths are listed below; others would be</u> proportionate. Outside of class time is studying, completing homework, reviewing, etc.

Length of term	<u>In-class</u> <u>time</u>	<u>Out-of-class</u> <u>time (</u> typical <u>)</u>	<u>Total hours/wk</u> (typical)	<u>Total Term hours</u> <u>(</u> typical <u>)</u>
<u>17 weeks</u>	<u>5 hrs/wk</u>	<u>7 hrs/wk</u>	<u>12</u>	<u>204</u>
<u>8 weeks</u>	<u>11 hrs/wk</u>	<u>14.5 hrs/wk</u>	<u>25.5</u>	<u>204</u>
<u>6 weeks</u>	<u>14</u>	<u>20</u>	<u>34</u>	<u>204</u>

- <u>Technology</u>: Graphing technology is used.
- <u>Grading</u>: Students who earn a grade of C or higher in Math 260 will pass the course.

4. <u>Who should enroll?</u>

- This Calculus course is recommended for any student who majors in STEM and has completed Math 155 (Calculus II) with a grade of C or better.
- 5. What prior knowledge students need to know to be successful?
- o Limits
- Differentiation
- Optimization
- o Integration and Fundamental Theorem of Calculus
- Parametric Equations and Polar Equations