MATH 270 – Linear Algebra

1. Course Description

• This course introduces students to the concepts of linear algebra. Topics include matrix algebra, Gaussian elimination, determinants of a matrix, properties of determinants, vector spaces and their properties with an introduction to proofs, linear transformations, orthogonality, eigenvalues and eigenvectors, and computational methods.

2. Topics Covered

0

0

0

- Matrix algebra
 - Matrix algebra
 - Matrix invertibility
 - Matrix transpose
 - Special matrices: diagonal, triangular, and symmetric.
- Systems of linear equations
 - Techniques for solving systems of linear equations including Gaussian elimination and Gauss-Jordan elimination
 - Relationship between coefficient matrix invertibility and solutions to a system of linear equations and the inverse matrices.
 - Determinants and their properties
 - Cofactor expansion
 - Elementary operations
 - Properties of determinant.
- Vector spaces
 - Definition
 - Basis and dimension of vector space
 - Linear independence and dependence
 - Coordinatization
 - Vector algebra for Rn
 - Real vector space and subspaces
 - Matrix-generated spaces: row space, column space, null space, rank, nullity. Linear transformation
 - Definition
 - Maps from Rn to Rm
 - Algebra of linear transformation
 - Change of basis
 - Kernel, range, rank
 - Matrices of general linear transformations
 - Inverse linear transformations.
 - Inner products on a real vector space
 - Dot product, norm of a vector, angle between vectors, orthogonality of two vectors in Rn
 - Angle and orthogonality in inner product spaces
 - Orthogonal and orthonormal bases; Gram-Schmidt process.
- Eigenvalues, eigenvectors, eigenspace

- Characteristic polynomial, trace
- Diagonalization including orthogonal diagonalization of symmetric matrices.
- Numerical methods
 - LU decomposition of a matrix
 - Gaussian elimination with partial pivoting
 - Iterative methods for solving linear systems
 - Power method for approximating eigenvalues.
 - Introduction to computing environment (such as MATLAB)
 - Commands for creating vectors, matrices, solving linear systems
 - Commands for matrix addition, scalar multiplication, matrix multiplication, matrix inversion, trace, transpose
 - Commands for determinants, eigenvalues, eigenvectors.
 - Using graphing technology to analyze topics
 - Graphical manner
 - Numerical manner
 - Tabular manner.

3. <u>What to expect?</u>

0

0

• Time: The most common term lengths are listed below; others would be proportionate. Outside of class time is studying, completing homework, reviewing, etc.

Length of term	In-class time	Out-of-class time (typical)	Total hours/wk (typical)	Total Term hours (typical)
17 weeks	4 hrs/wk	8 hrs/wk	12	204
6 weeks	11.3 hrs/wk	22.7 hrs/wk	34	204

- o <u>Technology:</u> Graphing technology is used,
- <u>Grading:</u> Students who earn a grade of C or higher in Math 270 will pass this course.

4. Who should enroll?

• This course is strongly recommended for students in STEM majors who have completed Math 155 (Calculus II) with a grade of C or better.

5. <u>What prior knowledge students need to know to be successful?</u>

- o Vectors
- Solving systems of linear equations in two and three variables by substitution and elimination methods
- Equations of lines and planes