## MATH 270 - Linear Algebra

## 1. Course Description

- This course introduces students to the concepts of linear algebra. Topics include matrix algebra, Gaussian elimination, determinants of a matrix, properties of determinants, vector spaces and their properties with an introduction to proofs, linear transformations, orthogonality, eigenvalues and eigenvectors, and computational methods.


## 2. Topics Covered

- Matrix algebra
- Matrix algebra
- Matrix invertibility
- Matrix transpose
- Special matrices: diagonal, triangular, and symmetric.

Systems of linear equations

- Techniques for solving systems of linear equations including Gaussian elimination and Gauss-Jordan elimination
- Relationship between coefficient matrix invertibility and solutions to a system of linear equations and the inverse matrices.
- Determinants and their properties
- Cofactor expansion
- Elementary operations
- Properties of determinant.

Vector spaces

- Definition
- Basis and dimension of vector space
- Linear independence and dependence
- Coordinatization
- Vector algebra for Rn
- Real vector space and subspaces
- Matrix-generated spaces: row space, column space, null space, rank, nullity. Linear transformation
- Definition
- Maps from Rn to Rm
- Algebra of linear transformation
- Change of basis
- Kernel, range, rank
- Matrices of general linear transformations
- Inverse linear transformations.

Inner products on a real vector space

- Dot product, norm of a vector, angle between vectors, orthogonality of two vectors in Rn
- Angle and orthogonality in inner product spaces
- Orthogonal and orthonormal bases; Gram-Schmidt process.
- Eigenvalues, eigenvectors, eigenspace
- Characteristic polynomial, trace
- Diagonalization including orthogonal diagonalization of symmetric matrices. Numerical methods
- LU decomposition of a matrix
- Gaussian elimination with partial pivoting
- Iterative methods for solving linear systems
- Power method for approximating eigenvalues. Introduction to computing environment (such as MATLAB)
- Commands for creating vectors, matrices, solving linear systems
- Commands for matrix addition, scalar multiplication, matrix multiplication, matrix inversion, trace, transpose
- Commands for determinants, eigenvalues, eigenvectors.

Using graphing technology to analyze topics

- Graphical manner
- Numerical manner
- Tabular manner.

3. What to expect?

- Time: The most common term lengths are listed below; others would be proportionate. Outside of class time is studying, completing homework, reviewing, etc.

| Length of <br> term | In-class time | Out-of-class <br> time (typical) | Total hours/wk <br> (typical) | Total Term hours <br> (typical) |
| :--- | :--- | :--- | :--- | :--- |
| 17 weeks | $4 \mathrm{hrs} / \mathrm{wk}$ | $8 \mathrm{hrs} / \mathrm{wk}$ | 12 | 204 |
| 6 weeks | $11.3 \mathrm{hrs} / \mathrm{wk}$ | $22.7 \mathrm{hrs} / \mathrm{wk}$ | 34 | 204 |

- Technology: Graphing technology is used,
- Grading: Students who earn a grade of C or higher in Math 270 will pass this course.

4. Who should enroll?

- This course is strongly recommended for students in STEM majors who have completed Math 155 (Calculus II) with a grade of C or better.

5. What prior knowledge students need to know to be successful?

- Vectors
- Solving systems of linear equations in two and three variables by substitution and elimination methods
- Equations of lines and planes

